Enhanced Satellite Cell Activity in Aging Skeletal Muscle after Manual Acupuncture-Induced Injury
نویسندگان
چکیده
Skeletal muscle injury stimulates normally quiescent resident satellite (stem) cells to re-enter the cell cycle and execute the myogenic program to restore muscle structure and function. Previously, we reported that manual acupuncture needling of the tibialis anterior (TA) (ST36 = Zusanli) muscle of young male rats produced focal injury and morphological changes that accompanied the presence of activated satellite cells (SC) 72 hours post-needling. To investigate whether aging TA muscle responds in a similar fashion to acupuncture needling, 17-month-old female rats were subjected to a single insertion and manual manipulation of an acupuncture needle. At 72 hours’ post-needling, hematoxylin staining of the TA revealed increased mononuclear cell infiltration that was indicative of localized injury. Moreover, this was accompanied by a four-fold increase in the expression of proliferating cell nuclear antigen within cells of needled tissues. Heightened immunofluorescence for MyoD was found within SC in the needled muscle, which correlated with a 6and 10-fold increase in two MyoD isoforms (~38 and 42 kDa, respectively), when analyzed by Western blotting. An additional 56 kDa MyoD immunoreactive species was observed in both needled and control muscle of the aging rats. The present study in pre-senile female rats, in conjunction with our previous study in young male rats, suggests that muscle remodeling and restructuring after injury may constitute the initial cellular and molecular mechanisms that underlie the benefits associated with acupuncture throughout the life-span.
منابع مشابه
Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species
Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activatio...
متن کاملIsolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution
Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...
متن کاملExercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle.
The effects of increased functional loading on early cellular regenerative events after exercise-induced injury in adult skeletal muscle were examined with the use of in vivo labeling of replicating myofiber nuclei and immunocyto- and histochemical techniques. Satellite cell proliferation in the soleus (Sol) of nonexercised rats (0.4 +/- 0.2% of fibers) was unchanged after an initial bout of de...
متن کاملInjury to skeletal muscle of mice following acute and sub-acute pregabalin exposure
Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...
متن کاملTristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury.
Myogenic precursor cells known as satellite cells persist in adult skeletal muscle and are responsible for its ability to regenerate after injury. Quiescent satellite cells are activated by signals emanating from damaged muscle. Here we describe the rapid activation of two genes in response to muscle injury; these transcripts encode LPS-inducible CXC chemokine (LIX), a neutrophil chemoattractan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014